Expressions and Variables
Do you ever have trouble putting what you want to say into words? Maybe you're trying to explain something and it's like you're speaking in another language that the other person can't understand. I think this is how my high school chemistry teacher felt while teaching me. Or maybe you're trying to tell someone you, you know, like them, or like like them, but he or she just isn't hearing you. It's frustrating, I know. Or, I mean, you know, I've heard.
Life would sometimes be simpler if we could just use math to speak for us all the time. Fortunately, there are endless real-life situations we can express using algebra. We just need a few tools. First, of course, are numbers. This is math, after all. We also need variables. A variable is a symbol that represents an unknown number. Then we'll need some operators, like addition and division. With these tools, we can say all kinds of things with ease.
Algebraic Expressions
We use the tools to build algebraic expressions. An algebraic expression is a mathematical phrase that may include numbers, variables and operators. It's basically like a sentence. But you're substituting these numbers, variables and operators for words.
Algebraic expressions can look like x + 1, 17y, 4a - 3 or q/6.
The most common and useful application of this idea is in solving word problems. We need to take the real situations that are in regular language in the problem and translate them into algebraic language to better understand them. These can involve several different types of operations.
Addition and Subtraction
Let's start with addition and subtraction expressions. Here's one: There are two competing lemonade stands run by siblings April and Mike. We want to describe the relationship between the prices for a cup of lemonade between the two stands. April is selling her lemonade for 50 cents less than Mike's. What do we do?
First, we need a variable for the cost of April's lemonade. Let's call that a. We use that in place of a number we don't know. Now, if Mike's lemonade is 50 cents more than April's, we can describe his as a + 50. That a+ 50 describes the cost of Mike's lemonade relative to the cost of April's.
We can test our expression by substituting a number for our variable. Let's say a = 75 cents. a + 50 = $1.25. Is $1.25 50 cents more than 75 cents? Yes! So we know that we have the correct expression.
We could also use subtraction here. We could use m as the cost of Mike's lemonade. Since April's is 50 cents less than Mike's, hers would be m - 50. Again, we could test this. Let's say m = 80 cents. So m - 50 = 30 cents. Is 30 50 cents less than 80? It is. It's also a very cheap cup of lemonade.