Understanding Sets
A set is a collection of objects, and it doesn't need to be a number!
This is the set of the clothes in my closet: C = {pants, t-shirt, skirt, and dress}. The capital C represents the set. So, if I said set C, we know I'm talking about clothes in my closet. The braces, { }, denote the elements, or members of the set. The elements of set C are pants, t-shirt, skirt, and dress.
You're probably familiar with a set of real numbers: R = {…-3, -2, -1, 0, 1, 2, 3...}. The three dots indicate that the pattern continues. The elements of this group are all real numbers. So, R equals the set of real numbers.
Unions
To collect sets together, we use the term union. We unite the sets into one.
Let's say I have two sets. Set A is green, blue, and pink. Set B is orange, yellow, and black. A u B represents the union of sets A and B. Yes, that u symbol represents union! It's kind of handy! A u B represents all the elements that are listed in set A, or in set B, or in both. How would that look in using mathematical symbols? A u B = {green, blue, pink, orange, yellow, black}.