Plotting a Graph
Drawing a graph of this linear equation can help us make a lot of predictions about what this pattern will do in the future, and it can also give us a better sense of the pattern that may not be easy to see just from looking at the numbers. When I want to graph a linear equation, I use the y-intercept, the b value as the beginning value on my graph. So, before I had driven the car a single day, it already had 27,000 miles on it because I got it used. After year one, I'd been driving it along, and after that year I was up to 39,000 miles. I kept driving it and driving it, so after year two I was up to 51,000 miles. So, every time I go over one year, I go up by 12,000 miles.
What we end up with are a bunch of points that are exactly in a row, and these points form a line. All linear equations come across as lines when you graph them - which makes sense, since linear and line are almost the same word. While I was drawing the graph, you may have noticed the triangle that I drew underneath where I went over one year and up 12,000 miles. This triangle is something called a slope triangle, and it helps us determine and draw the slope of the graph. Again, the slope is another name for how much the pattern is moving by. The slope is also what we call the rise over the run; that basically means how it goes up and down divided by how much it goes left and right.
Graph of a linear equation
This graph is really nice because it tells me how many miles will be on my car at any one point in just one picture, but these are really only estimates. If I wanted to know how many miles were on my car after 1 year, 7 months and 6 days, I'd have to go up to this point and read it over. We could guess that it's around 50, but we don't really know. And that's where the algebra comes in to it.
Solving a Linear Equation
So, it's my understanding that most cars last around 250,000 miles; I think I'd be happy if my car made it that far. My question is how much longer do I have? Will my car last as long as I think it will, or am I going to have to get another car pretty soon? We can use the equation to answer that question, where y is the number of miles and x is the number of years that have gone by: 250,000 = 12,000x + 27,000.
At this point I can undo the things that have been done to x to isolate x and get the number of years, which will give my answer. I know that x first gets multiplied by 12,000 and then it gets 27,000 added to it, so I need to undo those things backwards. The first thing I have to do is subtract 27,000 from both sides. Next, I'll need to divide both sides by 12,000. So, I undo multiplication with division; I divide both sides by 12,000. And I find out that x is about 18 years.
Steps to solving the linear equation